NAME

archive_wite_disk_new, archive wite_disk _set _options,
archive wite disk set _skip file, archive _wite_di sk _set _group_| ookup,
archive wite_disk set standard_| ookup,

archive wite _disk set user_ | ookup, archive_wite_ header,

archive_ wite data, archive wite data block, archive wite finish entry,
archive_ wite _close,archive wite finisharchive wite free — functions for cre-
ating objects on disk

LIBRARY
Streaming Archie Library (libarchve, -larchive)

SYNOPSIS
#i ncl ude <archive. h>

struct archive 0O

archive_wite_di sk_newvoi d);

i nt

archive wite _disk set _options(struct archive 0O int flags);

i nt

archive_ wite disk set skip file(struct archive 0 dev_t,ino_t);

i nt

archive wite_disk set group_l ookup(struct archive Ovoid [,
gidt (O(void O const char [gnane, gid t gid),
void ([tl eanup)(void O);

i nt

archive wite_disk set standard_| ookup(struct archive D;

i nt

archive wite _disk set user | ookup(struct archive O,void [
uid t (OD(void O const char Cunane, uid_t uid),
void ([tl eanup)(void O);

i nt

archive_wite_header(struct archive [struct archive_entry D);

ssize t

archive wite data(struct archive [, const void [size t);

ssize t
archive wite data_bl ock(struct archive [, const void [size_ t size,
int64_t offset);
i nt
archive_ wite finish _entry(struct archive D;
i nt
archive wite_close(struct archive D;
i nt
archive wite finish(struct archive D;
i nt
archive_ wite free(struct archive D;
DESCRIPTION
These functions prxide a complete API for creating objects on disk fretract archie_entry descriptions.

They are most naturally used when extracting objects from an\erabing thear chi ve_r ead() inter
face. Thegeneral process is to resluct archie_entryobjects from an arché, then write those objects to a

BSD Februan?, 2012 1

ARCHIVE_WRITE_DISK (3) BSD Library Functions Manual ARCHIVE_WRITE_DISK (3)

struct archie object created using tteg chi ve_wri t e_di sk() family functions. This interface is deliber
ately very similar to thar chi ve_wri t () interface used to write objects to a streaming aechi

archive_wite_di sk _new)
Allocates and initializes struct archie object suitable for writing objects to disk.

archive_ wite disk set _skip_ file()
Records the déce and inode numbers of a file that should not\mvwitten. Thisis typically
used to ensure that an extraction process doesventrde the archie from which objects are
being read. This capability is technically unnecessary but can be a significant performance opti-
mization in practice.

archive wite_disk set options()

The options field consists of a bitwise OR of one or more of the following values:

ARCHI VE_EXTRACT_OMER
The user and group IDs should be set on the restored file. By default, the user and group
IDs are not restored.

ARCHI VE_EXTRACT_PERM
Full permissions (including SGID, SUID, and sdbits) should be restored exactly as
specified, without obeying the current umadlote that SUID and SGID bits can only
be restored if the user and group ID of the object on disk are cortect.
ARCHI VE_EXTRACT _OWNER is not specified, then SUID and SGID bits will only be
restored if the defult user and group IDs of newly-created objects on disk happen to
match those specified in the anghientry. By default, only basic permissions are
restored, and umask is obeyed.

ARCHI VE_EXTRACT_TI ME
The timestamps (mtime, ctime, and atime) should be restored. Bulidaheg are
ignored. Notehat restoring of atime is not currently supported.

ARCHI VE_EXTRACT_NO_OVERWRI TE
Existing files on disk will not beverwritten. Bydefault, &isting regular files are trun-
cated and werwritten; existing directories will ha their permissions updated; other
pre-existing objects are unlinked and recreated from scratch.

ARCHI VE_EXTRACT_UNLI NK
Existing files on disk will be unlinked beforeyaattempt to create them. In some cases,
this can pree o be a $gnificant performance impvement. Bydefault, existing files
are truncated and rewrittenytithe file is not recreated. In particyldre default beha
ior does not break existing hard links.

ARCHI VE_EXTRACT_ACL
Attempt to restore &Ls. Bydefault, extended ACLs are ignored.

ARCHI VE_EXTRACT_FFLAGS
Attempt to restore extended file flags. By default, file flags are ignored.

ARCHI VE_EXTRACT_XATTR
Attempt to restore POSIX.1e extended attiéls. Bydefault, thg are ignored.

ARCHI VE_EXTRACT_SECURE_SYM.I NKS
Refuse to extract grobject whose final location euld be altered by a symlink on disk.
This is intended to help guard @agst a variety of mischief caused by avekithat
(deliberately or otherwise)xgact files outside of the current directorjhe default is
not to perform this checkif ARCHI VE_EXTRACT _UNLI NK is specified together with
this option, the library will remee any ntermediate symlinks it finds and return an error
only if such symlink could not be rewd.

ARCHI VE_EXTRACT_SECURE_NCDOTDOT
Refuse to extract a path that contains aelement anywhere within it. The default is to
not refuse such paths. Note that paths ending ialways cause an erroregadless of

BSD Februan2, 2012 2

ARCHIVE_WRITE_DISK (3) BSD Library Functions Manual ARCHIVE_WRITE_DISK (3)

this flag.

ARCHI VE_EXTRACT_SPARSE
Scan data for blocks of NUL bytes and try to recreate them with holgs.results in
sparse files, independent of whether the aecfurmat supports or uses them.

archive wite _disk set _group_l ookup(),archive wite disk set user_ | ookup()
The struct archie_entry objects contain both names and ids that can be used to identify users and
groups. Theseames and ids describe the ownership of the file itself and also appe&ai IrstA.
By default, the library uses the ids and ignores the names, but this caerbiéden by rgistering
user and group lookup function3o regster, you must provide a lookup function which accepts
both a name and id and returns a suitableYiol may also provide &oid 0O pointer to a priate
data structure and a cleanup function for that data. The cleanup function wilbkedinvhen the
struct archie object is destroyed.

archive wite _disk set standard_| ookup()
This comwvenience function installs a standard set of user and group lookup functions. These func-
tions useget pwnam(3) andget gr nam(3) to cowert names to ids, defaulting to the ids if the
names cannot be looked up. These functions also implement a simple memory cache to reduce the
number of calls tget pwnam(3) andget gr nam(3).

archive_wite_header|()
Build and write a header using the data in thevidex struct archie_entry structure. See
ar chi ve_ent r y(3) for information on creating and populatistguct archie_entryobjects.

archive wite_datal()
Write data corresponding to the header just writtBeturns number of bytes written or -1 on
error.

archive_wite_data_bl ock()
Write data corresponding to the header just written. This &sdikchi ve_write_dat a()
except that it performs a seek on the file being written to the specified offset before writing the
data. Thisis useful when restoring sparse files from areHbrmats that support sparse files.
Returns number of bytes written or -1 on err@iote: This is currently not supported for
archive_write handles, only foarchive write_diskhandles.)

archive_ wite finish entry()
Close out the entry just writterOrdinarily, clients neer need to call this, as it is called automati-
cally by archive wite next header() and archive wite cl ose() as needed.
However, some file attrilutes are written to disk only after the file is closed, so this can be neces-
sary if you need to work with the file on disk rigkitag.

archive wite_cl ose()
Set an attributes that could not be set during the initial restdfer example, directory time-
stamps are not restored initially because restoring a subsequentdik alter that timestamp.
Similarly, non-writable directories are initially created with write permissions (so that their con-
tents can be restoredYhe ar chi ve_write_di sk_new library maintains a list of all such
deferred attributes and sets them when this functiowvakéd.

archive wite finish(
This is a deprecated synonym &orchi ve_write free().

archive wite free()

Invokesar chi ve_write_cl ose() if it was not ivoked manually then releases all resources.
More information about thetruct archive object and the werall design of the library can be found in the
I i bar chi ve(3) overview. Mary of these functions are also documented uaderhi ve_wri t e(3).

BSD Februan?, 2012 3

ARCHIVE_WRITE_DISK (3) BSD Library Functions Manual ARCHIVE_WRITE_DISK (3)

RETURN VALUES
Most functions returrARCHI VE_COK (zero) on success, or one olva@l non-zero error codes for errors.
Specific error codes includeARCHI VE_RETRY for operations that might succeed if retried,
ARCHI VE_WARN for unusual conditions that do not peat further operations, an&RCH VE_FATAL for
serious errors that makemaining operations impossible.

archive_wite_di sk_new) returns a pointer to a newly-allocatgdlict archie object.

archive_wite_data() returns a count of the number of bytes actually written,loon error.

ERRORS
Detailed error codes and textual descriptions aweilable from the archive_errno() and
archive_error_string() functions.

SEE ALSO
archive_read(3),archive_wite(3),tar(1),libarchive(3)

HISTORY
The I i bar chi ve library first appeared iFreeBSD5.3. Thear chi ve_write_di sk interface vas
added td i bar chi ve 2. 0 and first appeared ifreeBSD6.3.

AUTHORS
Thel i bar chi ve library was written by Tim Kientzl&ientzle@acm.org

BUGS
Directories are actually extracted in dwdstinct phases. Directories are created during
archive_wite_header (), but final permissions are not set umtilchi ve_wite_cl ose(). This
separation is necessary to correctly handle borderline cases such as a non-writable directory containing files,
but can cause unexpected results. In particuliaectory permissions are not fully restored until the asehi
is closed. If you wusechdir(2) to change the current directory between calls to
archi ve_read_ext ract () or before callingar chi ve_read_cl ose(), you may confuse the permis-
sion-setting logic with the result that directory permissions are restored incorrectly.

The library attempts to create objects with filenames longerRA&k _MAX by creating prefixes of the full
path and changing the current directoQurrently, this logic is limited in scope; the fixup pass does not
work correctly for such objects and the symlink security check option disables the suppantyféong
pathnames.

Restoring the patha/ . . / bb does create each intermediate directdryparticular the directoryaa is cre-
ated as well as the final objdait. In theory this can be exploited to create an entire directory hieyawith
a dngle request. Of course, this does not work ifAREH VE _EXTRACT _NODOTDOT option is specified.

Implicit directories are alays created obeying the current umask. Explicit objects are created obeying the
current umask unlegsSRCHI VE_EXTRACT _PERMis specified, in which case theurrent umask is ignored.

SGID and SUID bhits are restored only if the correct user and group could be Ifset.
ARCHI VE_EXTRACT_OWNER is not specified, then no attempt is made to setwreeship. Inthis case,

SGID and SUID bits are restored only if the user and group of the final object happen to match those speci-
fied in the entry.

The “standard” user-id and group-id lookup functions are not thaullefbecausget gr nam3) and
get pwnan{3) are sometimes too large for particular applicatiortse current design allows the application
author to use a more compact implementation when appropriate.

BSD Februan?, 2012 4

ARCHIVE_WRITE_DISK (3) BSD Library Functions Manual ARCHIVE_WRITE_DISK (3)

There should be a correspondiagchi ve_r ead_di sk interface that walks a directory hieraychnd
returns archie entry objects.

BSD Februan?, 2012 5

