TAR (5) FreeBSDOFile Formats Manual TAR (5)

NAME
t ar — format of tape arctie files

DESCRIPTION
Thet ar archive format collects annumber of files, directories, and other file system objects (symbolic
links, device nodes, etc.) into a single stream of byfé® format was originally designed to be used with
tape dies that operate with fixed-size blocks, but is widely used as a general packaging mechanism.

General Format
A tar archive mnsists of a series of 512-byte records. Each file system object requires a header record
which stores basic metadata (pathnammmes permissions, etc.) and zero or more records containigg an
file data. The end of the arehiis indicated by tw records consisting entirely of zero bytes.

For compatibility with tape dxies that use fied block sizes, programs that read or write tar filesys read

or write a fixed number of records with each 1/O operation. These “blocks” vaagsah multiple of the

record size.The most common block size—and the maximum supported by historic implementations—is
10240 bytes or 20 records. (Note: the terms “block” and “record” here are not entirely standard; this docu-
ment follows the corention established by John Gilmore in documenpdg ar .)

Old-Style Archive Format
The original tar archie format has been extended mdimes to include additional information thatrious
implementors found necessaryhis section describes thanant implemented by the tar command included
in Version 7AT&T UNIX, which is one of the earliest widely-used versions of the tar program.

The header record for an old-stylar archive mnsists of the following:

struct header_old_tar {
char name[100] ;
char node[8];
char uid[8];
char gid[8];
char size[12];
char ntinme[12];
char checksuni 8] ;
char linkflag[1];
char 1inkname[100];
char pad[255];

i

All unused bytes in the header record are filled with nulls.

name Pahname, stored as a null-terminated strificarly tar implementations only stored regular files
(including hardlinks to those filesPne common early coantion used a trailing "/" character to
indicate a directory name, allowing directory permissions awmtep information to be arclhed
and restored.

mode File mode, stored as an octal number in ASCII.
uid, gid User id and group id of owneas atal numbers in ASCII.

size Size of file, as octal number in ASCIFor regular files only this indicates the amount of data that
follows the headerln particular this field was ignored by early tar implementations wheraet-
ing hardlinks. Modern writers shouldradys store a zero length for hardlink entries.

mtime Modification time of file, as an octal number in ASCTihis indicates the number of seconds since
the start of the epoch, 00:00:00 UTC January 1, 18ifle that ngaive values should bevaided
here, as theare handled inconsistently.

FreeBSD 7.1 May 20, 2004 1

TAR (5)

FreeBSDOFile Formats Manual TAR (5)

checksum

Header checksum, stored as an octal number in ASK@llcompute the checksum, set the check-
sum field to all spaces, then sum all bytes in the header using unsigned arithirheticield

should be stored as six octal digits followed by a null and a space chahNateithat may early
implementations of tar used signed arithmetic for the checksum field, which can cause interoper
ability problems when transferring areés between systems. Modern robust readers compute the
checksum both ways and accept the header if either computation matches.

linkflag, linkname

In order to presee/hardlinks and conseevtape, a file with multiple links is only written to the ar
chive the first time it is encountered. The next time it is encounteredjntkitag is set to an
ASCII ‘1" and thelinknamefield holds the first name under which this file appears. (Note that re
ular files hae a nll value in thdinkflag field.)

Early tar implementations varied invadhey terminated these fields. The tar command in Versiom&r

UNIX used the following carentions (this is also documented in early BSD manpages): the pathname must
be null-terminated; the mode, uid, and gid fields must end in a space and a null byte; the size and mtime
fields must end in a space; the checksum is terminated by a null and a Epdgemplementations filled

the numeric fields with leading spaces. This seems e haen common practice until thEEE Std
1003.1-1988 (POSIX1") standard was releaseBor best portability modern implementations should fill the
numeric fields with leading zeros.

Pre-POSIX Archives
An early draft ofiEEE Std 1003.1-1988 P0OSIX1") served as the basis for John Gilmegedt ar program
and mag system implementations from the late 1980s and early 1990s. Theseesughierally follaw the
POSIX ustar format described belavith the following variations:

The magic value is “ustdr(note the following space). The version field contains a space charac-
ter followed by a null.

The numeric fields are generally filled with leading spaces (not leading zeros as recommended in
the final standard).

The prefix field is often not used, limiting pathnames to the 100 characters of old-stylesarchi

POSIX ustar Archives
IEEE Std 1003.1-1988 POsSIX1") defined a standard tar file format to be read and written by compliant
implementations of ar (1). Thisformat is often called the “ustar” format, after the magilug used in the
header (The name is an acronym for “Unix StandafRT.) It extends the historic format with wefields:

FreeBSD 7.1

struct header _posi x_ustar {

char name[100] ;
char node[8];
char uid[8];

char gid[8];

char size[12];
char ntinme[12];
char checksuni 8] ;
char typeflag[1];
char 1inkname[100];
char magic[6] ;
char version[2];
char unane[32] ;
char gnane[32];
char devmaj or|[8];
char devmi nor| 8];

May 20, 2004 2

TAR (5) FreeBSDOFile Formats Manual TAR (5)

char prefix[155];
char pad[12];

i
typeflag Type of entry POSIX extended the earliéinkflag field with several nav type values:
“0” Regular file. NUL should be treated as a synonym, for compatibility purposes.
“1” Hard link.
‘2" Symbolic link.
“3” Character device node.
“4r Block device node.
“5” Directory.
“6” FIFO node.
“7" Reserved.

Other A POSIX-compliant implementation must treatyamnrecognized typeflag value as a
regular file. In particulgrwriters should ensure that all entrievda \alid filename so
that thg can be restored by readers that do not support the correspomntiémgien.
Uppercase letters "A" through "Z" are reserved for custaensions. Not¢hat soclets
and whiteout entries are not anle.

It is worth noting that thaizefield, in particulay has different meanings depending on the type.

For reqular files, of course, it indicates the amount of data following the he&dedirectories, it

may be used to indicate the total size of all files in the diredimryse by operating systems that

pre-allocate directory spac&or all other types, it should be set to zero by writers and ignored by
readers.

magic Contains the magic value “ustar” foled by a NUL byte to indicate that this is a POSIX standard
archive. Full compliance requires the uname and gname fields be properly set.

version Version. Thisshould be “00” (two copies of the ASCII digit zero) for POSIX standard arebi

unamegname
User and group names, as null-terminated ASCII strifdgese should be used in preference to
the uid/gid values when there set and the corresponding names exist on the system.

devmajor devminor
Major and minor numbers for character device or block device entry.

prefix First part of pathname. If the pathname is too long to fit in the 100 bytegguidy the standard
format, it can be split at g character with the first portion going here. If the prefix field is not
empty the reader will prepend the prefiglue and & character to the regular name field to obtain
the full pathname.

Note that all unused bytes must be seth.

Field termination is specified slightly differently by POSIX than byimes implementationsThe magig
uname and gnamefields must hee a tailing NUL. The pathnamelinkname and prefix fields must hee a
trailing NUL unless the fill the entire field. (In particulait is possible to store a 256-character pathname if
it happens to hee a/ as the 156th characferPOSIXrequires numeric fields to be zero-padded in the front,
and allows them to be terminated with either spaddubrcharacters.

Currently most tar implementations comply with the ustar format, occasionginding it by adding e
fields to the blank area at the end of the header record.

Pax Interchange Format
There are manattributes that cannot be portably stored in a POSIX ustarvaercl#EE Std 1003.1-2001
(“POSIX1") defined a “pax interchange format” that uses twew types of entries to hold teformatted
metadata that applies to following entriddote that a pax interchange format avehis a wstar archie in

FreeBSD 7.1 May 20, 2004 3

TAR (5) FreeBSDOFile Formats Manual TAR (5)

evay respect. The medata is stored in ustar-compatible avehentries that use the “x” or “g” typeflagn
particular older implementations that do not fully support thegersions will extract the metadata intg+e
ular files, where the metadata can be examined as necessary.

An entry in a pax interchange format akehonsists of one or tavgandard ustar entries, each with itgno
header and data. The first optional entry stores the extendedtatribr the following entryThis optional
first entry has an "x" typeflag and a size field that indicates the total size oft¢inelexl attriotes. The
extended attributes themselves are stored as a series of text-format lines encoded in the portable UTF-8
encoding. Eaclkine consists of a decimal numbargace, a ky gring, an equals sign, a value string, and a
new line. Thedecimal number indicates the length of the entire line, including the initial length field and the
trailing newline. Anexample of such a field is:

25 ctine=1084839148. 1212\ n
Keys in dl lowercase are standaragys. \endors can add their owreys by pefixing them with an all
uppercase endor name and a period. Note that, unlike historic headenumeric values are stored using
decimal, not octal A description of some commoreys follows:

atine, ctime, ntime
File access, inode change, and modification times. These fields cagaieene include a deci-
mal point and a fractional value.

uname, ui d, gname, gid
User name, group name, and numeric UID and GllDes. Thaiser name and group name stored
here are encoded in UTF8 and can thus include non-ASCII charatteesUID and GID fields
can be of arbitrary length.

i nkpat h
The full path of the linkd-to file. Note that this is encoded in UTF8 and can thus include non-
ASCII characters.

path The full pathname of the entriNote that this is encoded in UTF8 and can thus include non-ASCII
characters.

realtime.d security. O
These kys ae reserved and may be used for future standardization.

size The size of the fileNote that there is no length limit on this field, allowing conforming &eshb
store files much larger than the historic 8GB limit.

SCHI LY. O
Vendor-specific attributes used by Jp&chilling’s st ar implementation.

SCHI LY. acl . access, SCHI LY. acl . def aul t
Stores the access and default ACLs as textual strings in a format thakierasion of the format
specified by POSIX.1e draft 17. In particukeach user or group access specification can include a
fourth colon-separated field with the numeric UID or GIThis allows ACLs to be restored on
systems that may not V& cmplete user or group informatiomadable (such as when NIS/YP or
LDAP services are temporarily wsilable).

SCHI LY. devni nor, SCHI LY. devhaj or
The full minor and major numbers for device nodes.

SCHI LY. dev, SCHILY.ino, SCH LY. nlinks
The device numbgemode numberand link count for the entryln particulat note that a pax inter
change format arché wsing Joeg Schilling’s SCHI LY. Oextensions can store all of the data from
struct stat

FreeBSD 7.1 May 20, 2004 4

TAR (5) FreeBSDOFile Formats Manual TAR (5)

LI BARCHI VE. xat t r . namespace.key
Libarchive gores POSIX.1e-style extended attributes usieg lof this form. The key value is
URL-encoded: All non-ASCII characters and the tssecial characters “=" and “%” are encoded
as “%”" followed by two uppercase hexadecimal digits. The value of tleg ls the etended
attribute value encoded in base 64. XXX Detail the base-64 format here XXX

VENDOR. [
XXX document other vendor-specific extensions XXX

Any values stored in an extended attribwerode the corresponding values in the regular tar heddete

that compliant readers should ignore the regular fields whgratbeverridden. Thisis important, asast-

ing archvers are knan to store non-compliant values in the standard header fields in this situbtiere

are no limits on length for grof these fields.In particular numeric fields can be arbitrarily . All text

fields are encoded in UTF8. Compliant writers should store only portable 7-bit ASCII characters in the stan-
dard ustar header and use extended attributes wdventext value contains non-ASCII characters.

In addition to thex entry described alve, the pax interchange format also supporgsemtry Theg entry is
identical in format, but specifies attributes that seas @faults for all subsequent arehi entries. Theg
entry is not widely used.

Besides the ne x andg entries, the pax interchange format hasnadéner minor variations from the earlier
ustar format. The most troubling one is that hardlinks are permitted te lthta following them. This
allows readers to restoreyahardlink to a file without hang to rewind the archie © find an earlier entry
However, it creates complications for robust readers, as it is no longer clear whether orynstdhiel
ignore the size field for hardlink entries.

GNU Tar Ar chives

The GNU tar program started with a pre-POSIX format similar to that described earlier amtehdsceit
using seeral different mechanisms: It addedamngelds to the empty space in the header (some of whash w
later used by POSIX for conflicting purposes); it allowed the header to be contiaieduttiple records;
and it defined ne entries that modify following entries (similar in principle to thentry described alve,

but each GNU special entry is single-purpose, unlihe general-purpose entry). Asa result, GNU tar ar
chives ae not POSIX compatible, although more lenient POSIX-compliant readers can successfdly e
most GNU tar archis.

struct header_gnu_tar ({
char name[100] ;
char node[8];
char uid[8];
char gid[8];
char size[12];
char ntinme[12];
char checksuni 8] ;
char typeflag[1];
char 1inkname[100];
char magic[6] ;
char version[2];
char unane[32] ;
char gnane[32];
char devmaj or|[8];
char devmi nor[8];
char atinme[12];
char ctime[12];
char offset[12];

FreeBSD 7.1 May 20, 2004 5

TAR (5)

b

FreeBSDOFile Formats Manual TAR (5)

char | ongnanes[4];

char unused[1];

struct {
char offset[12];
char nunbytes[12];

} sparse[4];

char isextended[1];

char realsize[12];

char pad[17];

typeflag GNU tar uses the following special entry types, in addition to those defined by POSIX:

FreeBSD 7.1

7

D

GNU tar treats type "7" records identically to type "0" recordsept on one obscure
RTOS where thg are used to indicate the pre-allocation of a contiguous file on disk.

This indicates a directory entrydnlike the POSIX-standard "5" typeflag, the header is
followed by data records listing the names of files in this directéagh name is pre-
ceded by an ASCII "Y" if the file is stored in this akehir "N" if the file is not stored

in this archve. Each name is terminated with a null, and an extra null marks the end of
the name list. The purpose of this entry is to support incremental backups; a program
restoring from such an arefai may wish to delete files on disk that did naisein the
directory when the arcte was made.

Note that the "D" typeflag specifically violates POSIX, which requires that unrecognized
typeflags be restored as normal files. In this case, restoring the "D" entry as a file could
interfere with subsequent creation of the like-named directory.

The data for this entry is a long linkname for the following regular entry.
The data for this entry is a long pathname for the following regular entry.

This is a continuation of the last file on the previookime. GNUmulti-volume af
chives guarantee that each volume begins with a valid entry heddensure this, a file
may be split, with part stored at the end of oakime, and part stored at thegbwing

of the next wlume. Theé'M" typeflag indicates that this entry continues an existing file.
Such entries can only occur as the first or second entry in aneafdta latter only if
the first entry is a volume labelThesizefield specifies the size of this entryhe offset
field at bytes 369-380 specifies the offset where this file fragmeiridheTherealsize
field specifies the total size of the file (which must egirgplusoffse). Whenextract-
ing, GNU tar checks that the header file name is the onexpéctng, that the header
offset is in the correct sequence, and that the sum of offset and size is equal to realsize.
FreeBSDs wersion of GNU tar does not handle the corner case of arvescheing
continued in the middle of a long name or other extension header.

Type "N" records are no longer generated by GNU Tduey contained a list of files to

be renamed or symlinked after extraction; this was originally used to support long
names. Theontents of this record are xtelescription of the operations to be done, in
the form “Rename %s to %s\n” or “Symlink %s to %s\n”; in either case, both filenames
are escaped using K&R C syntax.

This is a “sparse” regular fileSparse files are stored as a series of fragméiiis.
header contains a list of fragment offset/length pairs. If more than four such entries are
required, the header ixtended as necessary with “extra” header extensions (an older
format that is no longer used), or “sparse” extensions.

May 20, 2004 6

TAR (5) FreeBSDOFile Formats Manual TAR (5)

\% The namefield should be interpreted as a tape/volume header name. This entry should
generally be ignored on extraction.

magic The magic field holds the fvcharacters “ustar” followed by a spacHote that POSIX ustar ar
chives havea trailing null.

version The version field holds a space character followed by a Mdte that POSIX ustar arales use
two copies of the ASCII digit “0”.

atime ctime
The time the file \&s last accessed and the time of last change of file information, stored in octal as
with mtime

longnames
This field is apparently no longer used.

Sparseoffset / numbytes
Each such structure specifies a single fragment of a spars&Haetwo fields store values as octal
numbers. Théragments are each padded to a multiple of 512 bytes in the@r€bn extraction,
the list of fragments is collected from the header (includirygeatension headers), and the data is
then read and written to the file at appropriate offsets.

isextended
If this is set to non-zero, the header will be followed by additional “sparse header” reEauts.
such record contains information about as yres21 aditional sparse blocks as shown here:

struct gnu_sparse_header {
struct {
char offset[12];
char nunbytes[12];
} sparse[21];
char i sext ended[1] ;
char paddi ng[7] ;
H
realsize A binary representation of the fifetomplete size, with a much larger range than the POSIX file
size. Inparticular with Mtype files, the current entry is only a portion of the file. In that case, the
POSIX size field will indicate the size of this entry; thalsizefield will indicate the total size of
the file.

Solaris Tar
XXX More Details Needed XXX

Solaris tar (bginning with SUNOS XXX 5.7 ?? XXX) supports an “extended” format that is fundamentally
similar to pax interchange format, with the following differences:

. Extended attribtes are stored in an entry whose typ¥,isot x, as sed by pax interchange for
mat. Thedetailed format of this entry appears to be the same as detailedifabthex entry.
. An additionalA entry is used to store an ACL for the following regular enfriile body of this

entry contains a sen-digit octal number (whosealue is 01000000 plus the number oflA
entries) followed by a zero byte, followed by the textual ACL description.

Other Extensions
One common extension, utilized by GNU, taar, and other never t ar implementations, permits binary
numbers in the standard numeric fields. This is flagged by setting the high bit of the first chahasieer
mits 95-bit values for the length and time fields and 63dites for the uid, gid, and device humbeBhNU
tar supports thisxtension for the length, mtime, ctime, and atime fieldtseg Schilling’s gar program sup-

FreeBSD 7.1 May 20, 2004 7

TAR (5) FreeBSDOFile Formats Manual TAR (5)

ports this extension for all numeric fieldslote that this extension is largely obsoleted by tktereled
attribute record provided by the pax interchange format.

Another early GNU extension all@d base-64 values rather than octal. This extension was sledritid
such archies ae almost neer seen. Havever, there is still code in GNU tar to support them; this code is

responsible for a very crypticatning message that is sometimes seen when GNU tar encounters a damaged
archie.

SEE ALSO
ar (1), pax(1),t ar (1)

STANDARDS
Thet ar utility is no longer a part of POSIX or the Single Unix Standdtdast appeared in Version 2 of
the SingleUNIX Specification (SUSvZ). It has been supplanted in subsequent standargsubfi). The
ustar format is currently part of the specification for plae (1) utility. The pax interchange file format is
new with IEEE Std 1003.1-2001 POSIX1").

HISTORY
At ar command appeared in&ath Edition Unix, which \as released in Januaf@79. Itreplaced thé p
program from Fourth Edition Unix which in turn replaced tlag program from First Edition UnixJohn
Gilmore’spdt ar public-domain implementation (circa 1987) was highly influential and formed the basis of
G\U tar. Joeg Shilling’s st ar archver is another open-source (GPL) areé&i (originally developed
circa 1985) which features complete support for pax interchange format.

FreeBSD 7.1 May 20, 2004 8

