
archive_read_disk (3) FreeBSD Library Functions Manual archive_read_disk (3)

NAME
archive_read_disk_new, archive_read_disk_set_symlink_logical,
archive_read_disk_set_symlink_physical,
archive_read_disk_set_symlink_hybrid, archive_read_disk_entry_from_file,
archive_read_disk_gname, archive_read_disk_uname,
archive_read_disk_set_uname_lookup, archive_read_disk_set_gname_lookup,
archive_read_disk_set_standard_lookup, archive_read_close,
archive_read_finish — functions for reading objects from disk

SYNOPSIS
#include <archive.h>

struct archive ∗
archive_read_disk_new(void);

int
archive_read_disk_set_symlink_logical(struct archive ∗ );

int
archive_read_disk_set_symlink_physical(struct archive ∗ );

int
archive_read_disk_set_symlink_hybrid(struct archive ∗ );

int
archive_read_disk_gname(struct archive ∗ , gid_t);

int
archive_read_disk_uname(struct archive ∗ , uid_t);

int
archive_read_disk_set_gname_lookup(struct archive ∗ , void ∗ ,

const char ∗ (∗ lookup)(void ∗ , gid_t) , void (∗ cleanup)(void ∗ ) );

int
archive_read_disk_set_uname_lookup(struct archive ∗ , void ∗ ,

const char ∗ (∗ lookup)(void ∗ , uid_t) , void (∗ cleanup)(void ∗ ) );

int
archive_read_disk_set_standard_lookup(struct archive ∗ );

int
archive_read_disk_entry_from_file(struct archive ∗ ,

struct archive_entry ∗ , int fd , const struct stat ∗ );

int
archive_read_close(struct archive ∗ );

int
archive_read_finish(struct archive ∗ );

DESCRIPTION
These functions provide an API for reading information about objects on disk.In particular, they provide an
interface for populatingstruct archive_entryobjects.

archive_read_disk_new()
Allocates and initializes astruct archive object suitable for reading object information from disk.

FreeBSD 7.1 March 10, 2009 1



archive_read_disk (3) FreeBSD Library Functions Manual archive_read_disk (3)

archive_read_disk_set_symlink_logical(),
archive_read_disk_set_symlink_physical(),
archive_read_disk_set_symlink_hybrid()
This sets the mode used for handling symbolic links. The “logical” mode follows all symbolic
links. The“physical” mode does not follow any symbolic links. The “hybrid” mode currently
behaves identically to the “logical” mode.

archive_read_disk_gname(), archive_read_disk_uname()
Returns a user or group name given a gid or uid value. Bydefault, these always return a NULL
string.

archive_read_disk_set_gname_lookup(), archive_read_disk_set_uname_lookup()
These allow you to override the functions used for user and group name lookups.You may also
provide a void ∗ pointer to a private data structure and a cleanup function for that data.The
cleanup function will be invoked when thestruct archive object is destroyed or when new lookup
functions are registered.

archive_read_disk_set_standard_lookup()
This convenience function installs a standard set of user and group name lookup functions.These
functions usegetpwid(3) andgetgrid(3) to convert ids to names, defaulting to NULL if the
names cannot be looked up. These functions also implement a simple memory cache to reduce the
number of calls togetpwid(3) andgetgrid(3).

archive_read_disk_entry_from_file()
Populates astruct archive_entry object with information about a particular file.The archive_entry
object must have already been created witharchive_entry_new(3) and at least one of the
source path or path fields must already be set. (If both are set, the source path will be used.)

Information is read from disk using the path name from thestruct archive_entry object. If a file
descriptor is provided, some information will be obtained using that file descriptor, on platforms
that support the appropriate system calls.

If a pointer to astruct statis provided, information from that structure will be used instead of read-
ing from the disk where appropriate. This can provide performance benefits in scenarios where
struct statinformation has already been read from the disk as a side effect of some other operation.
(For example, directory traversal libraries often provide this information.)

Where necessary, user and group ids are converted to user and group names using the currently
registered lookup functions above. This affects the file ownership fields and ACL values in the
struct archive_entryobject.

archive_read_close()
This currently does nothing.

archive_write_finish()
Invokesarchive_write_close() if it was not invoked manually, then releases all resources.

More information about thestruct archive object and the overall design of the library can be found in the
libarchive(3) overview.

EXAMPLE
The following illustrates basic usage of the library by showing how to use it to copy an item on disk into an
archive.

void
file_to_archive(struct archive ∗ a, const char ∗ name)
{
char buff[8192];

FreeBSD 7.1 March 10, 2009 2



archive_read_disk (3) FreeBSD Library Functions Manual archive_read_disk (3)

size_t bytes_read;
struct archive ∗ ard;
struct archive_entry ∗ entry;
int fd;

ard = archive_read_disk_new();
archive_read_disk_set_standard_lookup(ard);
entry = archive_entry_new();
fd = open(name, O_RDONLY);
if (fd < 0)

return;
archive_entry_copy_sourcepath(entry, name);
archive_read_disk_entry_from_file(ard, entry, fd, NULL);
archive_write_header(a, entry);
while ((bytes_read = read(fd, buff, sizeof(buff))) > 0)
archive_write_data(a, buff, bytes_read);

archive_write_finish_entry(a);
archive_read_finish(ard);
archive_entry_free(entry);

}

RETURN VALUES
Most functions returnARCHIVE_OK (zero) on success, or one of several negative error codes for errors.
Specific error codes include:ARCHIVE_RETRY for operations that might succeed if retried,
ARCHIVE_WARN for unusual conditions that do not prevent further operations, andARCHIVE_FATAL for
serious errors that make remaining operations impossible.The archive_errno(3) and
archive_error_string(3) functions can be used to retrieve an appropriate error code and a textual
error message. (Seearchive_util(3) for details.)

archive_read_disk_new() returns a pointer to a newly-allocatedstruct archive object or NULL if the
allocation failed for any reason.

archive_read_disk_gname() andarchive_read_disk_uname() return const char∗ pointers to
the textual name or NULL if the lookup failed for any reason. Thereturned pointer points to internal storage
that may be reused on the next call to either of these functions; callers should copy the string if they need to
continue accessing it.

SEE ALSO
archive_read(3),archive_write(3),archive_write_disk(3),tar(1),libarchive(3)

HISTORY
Thelibarchive library first appeared inFreeBSD5.3. Thearchive_read_disk interface was added
to libarchive 2.6 and first appeared inFreeBSD8.0.

AUTHORS
Thelibarchive library was written by Tim Kientzle〈kientzle@freebsd.org〉.

BUGS
The “standard” user name and group name lookup functions are not the defaults becausegetgrid(3) and
getpwid(3) are sometimes too large for particular applications. The current design allows the application
author to use a more compact implementation when appropriate.

FreeBSD 7.1 March 10, 2009 3



archive_read_disk (3) FreeBSD Library Functions Manual archive_read_disk (3)

The full list of metadata read from disk byarchive_read_disk_entry_from_file() is necessarily
system-dependent.

The archive_read_disk_entry_from_file() function reads as much information as it can from
disk. Somemethod should be provided to limit this so that clients who do not need ACLs, for instance, can
avoid the extra work needed to look up such information.

This API should provide a set of methods for walking a directory tree.That would make it a direct parallel
of thearchive_read(3) API. When such methods are implemented, the “hybrid” symbolic link mode
will make sense.

FreeBSD 7.1 March 10, 2009 4


